博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    Netty基础—2.网络编程基础四
    查看>>
    Netty基础—3.基础网络协议一
    查看>>
    Netty基础—3.基础网络协议二
    查看>>
    Netty基础—4.NIO的使用简介一
    查看>>
    Netty基础—4.NIO的使用简介二
    查看>>
    Netty基础—5.Netty的使用简介
    查看>>
    Netty基础—6.Netty实现RPC服务一
    查看>>
    Netty基础—6.Netty实现RPC服务三
    查看>>
    Netty基础—6.Netty实现RPC服务二
    查看>>
    Netty基础—7.Netty实现消息推送服务一
    查看>>
    Netty基础—7.Netty实现消息推送服务二
    查看>>
    Netty基础—8.Netty实现私有协议栈一
    查看>>
    Netty基础—8.Netty实现私有协议栈二
    查看>>
    Netty多线程 和 Redis6 多线程对比
    查看>>
    Netty学习总结(1)——Netty入门介绍
    查看>>
    Netty学习总结(2)——Netty的高性能架构之道
    查看>>
    Netty学习总结(3)——Netty百万级推送服务
    查看>>
    Netty学习总结(4)——图解Netty之Pipeline、channel、Context之间的数据流向
    查看>>
    Netty学习总结(5)——Netty之TCP粘包/拆包问题的解决之道
    查看>>
    Netty学习总结(6)——Netty使用注意事项
    查看>>